Ca/calmodulin kinase II differentially modulates potassium currents.

نویسندگان

  • Stefan Wagner
  • Elena Hacker
  • Eleonora Grandi
  • Sarah L Weber
  • Nataliya Dybkova
  • Samuel Sossalla
  • Thomas Sowa
  • Larissa Fabritz
  • Paulus Kirchhof
  • Donald M Bers
  • Lars S Maier
چکیده

BACKGROUND Potassium currents contribute to action potential duration (APD) and arrhythmogenesis. In heart failure, Ca/calmodulin-dependent protein kinase II (CaMKII) is upregulated and can alter ion channel regulation and expression. METHODS AND RESULTS We examine the influence of overexpressing cytoplasmic CaMKIIdelta(C), both acutely in rabbit ventricular myocytes (24-hour adenoviral gene transfer) and chronically in CaMKIIdelta(C)-transgenic mice, on transient outward potassium current (I(to)), and inward rectifying current (I(K1)). Acute and chronic CaMKII overexpression increases I(to,slow) amplitude and expression of the underlying channel protein K(V)1.4. Chronic but not acute CaMKII overexpression causes downregulation of I(to,fast), as well as K(V)4.2 and KChIP2, suggesting that K(V)1.4 expression responds faster and oppositely to K(V)4.2 on CaMKII activation. These amplitude changes were not reversed by CaMKII inhibition, consistent with CaMKII-dependent regulation of channel expression and/or trafficking. CaMKII (acute and chronic) greatly accelerated recovery from inactivation for both I(to) components, but these effects were acutely reversed by AIP (CaMKII inhibitor), suggesting that CaMKII activity directly accelerates I(to) recovery. Expression levels of I(K1) and Kir2.1 mRNA were downregulated by CaMKII overexpression. CaMKII acutely increased I(K1), based on inhibition by AIP (in both models). CaMKII overexpression in mouse prolonged APD (consistent with reduced I(to,fast) and I(K1)), whereas CaMKII overexpression in rabbit shortened APD (consistent with enhanced I(K1) and I(to,slow) and faster I(to) recovery). Computational models allowed discrimination of contributions of different channel effects on APD. CONCLUSIONS CaMKII has both acute regulatory effects and chronic expression level effects on I(to) and I(K1) with complex consequences on APD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents.

Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylati...

متن کامل

Neurobiology of Disease Presynaptic Ca /Calmodulin-Dependent Protein Kinase II Modulates Neurotransmitter Release by Activating BK Channels at Caenorhabditis elegans Neuromuscular Junction

Although Ca 2 /calmodulin-dependent protein kinase II (CaMKII) is enriched at the presynaptic nerve terminal, its role in neurotransmitter release is poorly defined. We assessed the function of presynaptic CaMKII in neurotransmitter release and tested the hypothesis that BK channel is a mediator of presynaptic CaMKII function by analyzing miniature and evoked postsynaptic currents at the Caenor...

متن کامل

The eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II.

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of neuronal excitability in many systems. Recent studies suggest that local regulation of membrane potential can have important computational consequences for neuronal function. In Drosophila, CaMKII regulates the eag potassium channel, but if and how this regulation was spatially restricted was unknown...

متن کامل

Involvement of calmodulin and myosin light chain kinase in activation of mTRPC5 expressed in HEK cells.

The classic type of transient receptor potential channel (TRPC) is a molecular candidate for Ca(2+)-permeable cation channels in mammalian cells. Because TRPC channels have calmodulin (CaM) binding sites at their COOH termini, we investigated the effect of CaM on mTRPC5. TRPC5 was initially activated by muscarinic stimulation with 50 microM carbachol and then decayed rapidly even in the presenc...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Arrhythmia and electrophysiology

دوره 2 3  شماره 

صفحات  -

تاریخ انتشار 2009